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Abstract 

The current paper describes and illustrates three things: (a) sampling variance and 

confidence intervals for Cronbach’s Alpha, (b) the relative precision of reliability 

estimates from local studies and meta-analyses, and (c) how to blend the local and meta-

analytic information to create an optimal local reliability estimate according to Bayesian 

principles.  The paper is not about artifact corrections used to compute a meta-analysis.  

Rather it is about using information contained in a meta-analysis to improve local 

estimates of reliability.  The improved estimates can result in better estimates and 

corrections for artifacts at the local level.     
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Estimating Reliability in Primary Research 

Measurement experts routinely call for the estimation of the reliability of all 

measures (scores) used in a study based on that study’s data (e.g., Thompson, 2003; 

Whittington, 1998).  That is, primary researchers are asked to report estimates of the 

reliability of their measures based on their data.  Despite such calls for reporting local 

estimates, many researchers fail to report any reliability estimates at all or else simply 

report estimates taken from test manuals or other literature reporting the development of 

the measure (e.g., Vacha-Haase, Ness, Nilsson, & Reetz, 1999, Yin & Fan, 2000).  

Measurement experts note that reliability estimates reported in test manuals or in articles 

reporting the development of a measure may not adequately represent the reliability of 

the data in any particular study because of the influence of the research context, including 

the variability of the trait in the population of interest and the context of measurement, 

including such factors as the purpose of measurement (e.g., selection vs. developmental 

feedback) and the testing conditions (e.g., noise, light, time of day, etc.).   

    On the other hand, such calls for local reliability estimates typically fail to mention 

of the importance of sampling error on the precision of the local study estimate (Hunter 

& Schmidt, 2004; for recent exceptions, see Cronbach & Shavelson, 2004; Vacha-Haase, 

Henson, & Caruso, 2002).  With small samples, the local estimate of reliability will 

usually be much less precise than a comparable estimate taken from the test manual or 

from a meta-analysis.  There may be a tradeoff between precision and applicability of 

primary study estimates and meta-analytic reliability estimates.  That is, the local 

estimate may be more applicable than is the meta-analytic estimate (because of the 

influence of research context), but the local estimate may be less precise than is the meta-
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analytic estimate (because of sampling error).  Clearly we would like to know the 

precision of the local estimate and to be able to articulate what the tradeoff may be.  It is 

also possible to blend the local and meta-analytic estimates.  The current paper therefore 

describes and illustrates three things: 

1. sampling variance and confidence intervals for Cronbach’s Alpha, 

2. the relative precision of estimates from local studies and meta-analyses, 

3. how to blend the local and meta-analytic information to create an optimal local 

estimate according to Bayesian principles (Lee, 1989; Brannick & Hall, 2003).   

Confidence Intervals for Alpha 

    Cronbach’s alpha appears to be the most commonly reported estimate of reliability 

in the psychological research literature (Hogan, Benjamin, & Brezinski, 2000).  Because 

it is an intraclass correlation, its sampling distribution is awkward and confidence 

intervals have only recently become available for it.  However, it is quite important to 

report the precision of the estimate of alpha (that is, its standard error or confidence 

interval, Iacobucci & Duhachek, 2003) so that researchers can understand the likely 

magnitude of error associated with the estimate.   

 An asymptotic (large sample) formula for the sampling variance of the function of 

Cronbach’s Alpha )ˆ( αα −n is shown by (Iacobucci & Dubachek, 2003, p. 480, 

Equation 2; van Zyl, Neudecker, & Nel, 2000, p. 276,Equations 20, 21): 

[ ]))((2))((
)()1(

2 222
32

2

jVjtrVVtrtrVVjj
Vjjk

kQ ′−+′⎥
⎦

⎤
⎢
⎣

⎡
′−

=                            (1) 

where k is the number of items that are added for form the composite whose reliability is 

indexed by alpha, j is a k x 1 column vector of ones, V is the covariance matrix of the 
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items (that is, the sample estimate of the population covariance matrix), and tr is the trace 

function (the sum of the diagonal elements of a matrix).    The asymptotic 95 percent 

confidence interval is given by (Iacobucci & Dubachek, 2003): 
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where n = (N-1).  A small-scale simulation by van Zyl, Neudecker and Nel (2000) shows 

that the asymptotic estimate appears to yield reasonable results provided that N is a least 

100.  However, Yuan, Guarnaccia, and Hayslip (2003) recommended that bootstrap 

estimates be used to compute confidence intervals rather than asymptotic estimates.  

They based their recommendations on a comparison of methods using data from the 

Hopkins Symptom Checklist.  Bootstrap estimates are computed by taking repeated 

samples of data with replacement from the study data to compute an empirical sampling 

distribution.  The empirical sampling distribution is then inspected to see where the 

extremes of the distribution fall, that is, the bootstrap estimates allow for the calculation 

of an empirical confidence interval.   

SAS programs that can be used to compute both asymptotic and bootstrap 

confidence intervals for alpha can be found at 

http://luna.cas.usf.edu/~mbrannic/software/softdir.htm.  The programs contain sample 

data from students who completed a questionnaire composed of some IPIP extroversion 

items.  Based on responses of 100 people to the ten items, the estimated alpha is .89, with 

asymptotic confidence interval (95 percent) of .85 to .92.  The bootstrap confidence 

interval (95 percent) ranges from .85 to .91, so there appears to be good agreement 

between the two different confidence intervals estimated by the asymptotic and bootstrap 

http://luna.cas.usf.edu/~mbrannic/software/softdir.htm
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methods in this case.  Either method can be used to estimate the sampling variance of 

alpha for a local study. 

Unfortunately, both the asymptotic sampling variance and bootstrap methods 

require information that is not typically presented in journal articles.  The asymptotic 

method requires the covariance matrix for the items, and the bootstrap method requires 

the raw data.  Both methods are of interest to primary researchers, but meta-analysts 

typically do not have access to the required data.  It is possible, however, to assume 

compound symmetry for the covariance matrix (that is, to assume that the covariance or 

correlation among all items is the same).  Under the assumption of compound symmetry, 

it is possible to solve for the common covariance and then to use the asymptotic formula 

to estimate the sampling variance of alpha.   Such a procedure is analogous to using the 

reported estimates of the mean and standard deviation to estimate the reliability (KR-21) 

of tests composed of dichotomous items. 

Under the assumption of compound symmetry, the expression for alpha becomes 

(van Zyl, Neudecker, & Nel, 2000, p. 272, Equation 3) 

)1(1 −+
=

k
k
ρ
ρα                                                                                (3) 

where k is the number of items and ρ is the common element in the covariance matrix 

(i.e., the correlation of each item with all other items).  A little algebra allows us to solve 

for the common element, thus: 

)1( −−
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For example, if alpha is .8 and there are 3 items, then the implied correlation matrix is 

1 0.5714 0.5714 
0.5714 1 0.5714 
0.5714 0.5714 1 

 

If the primary researcher reports alpha, the number of items, and the sample size, then the 

meta-analyst can find an approximate sampling variance and therefore confidence 

intervals for the alpha estimate. 

Precision of Estimates 

Although measurement experts routinely call for local estimates of reliability (and 

there is no real reason NOT to report them), measurement experts typically fail to note 

the relative precision of local and meta-analytic estimates of reliability.  That is, they fail 

to note that the local estimates tend to contain much more sampling error than do meta-

analytic estimates (see also Sawilowsky, 2000, for further aspects of the controversy 

about reporting local reliability estimates and their meaning). The second contribution of 

the current paper is to quantify the precision of the two estimates to allow an explicit 

comparison of the precision of the two different estimates. 

 There can be no stock answer to the question of the relative precision of the 

estimated reliability in a given sample versus the mean reliability of a meta-analysis.  For 

the local study, the uncertainty of the reliability depends chiefly on the number of items, 

the magnitude of the covariances, and the number of people[check this].  As the number 

of items, the size of the covariance, and the size of the sample all increase, the local 

estimate will become precise.  The meta-analytic result will become precise as the local 

samples become precise and also as the number of studies in the meta-analysis increases.  

In both cases, the sampling variance can be used to index the precision of the estimate. 
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Let’s look at a single example.  The data in the following table were copied from 

Thompson and Cook (2002).  The study was a meta-analysis of reliability estimates for a 

survey assessing user satisfaction with library services across 43 different universities.  

Table 1 shows the alpha estimates for the total score (based on k=25 items), as well as the 

alpha estimates for one of the subscales (5 items), Information Access.  The sample size 

for each sample is also reported.  From the information given in Table 1, I computed an 

estimate of the common element (rho) based on the assumption of compound symmetry.  

I then calculated the estimated sampling variance for each study.  For the Information 

Access subscale, the study sampling variance estimates ranged from .000144 to .001425.  

The mean sampling variance was .000593.  The estimated population variance of the 

alpha coefficients (raw data) was.00148651.  I divided that by 43 (the sample size) to find 

the variance of the mean (the squared standard error of the mean), which was .00003547.  

The variance estimates tell us about the precision of the estimates.  If we compare the 

variances by forming ratios, we can get a single number that represents the relative 

precision of the estimates (relative efficiency in statistical terms).  In this study, the mean 

of the meta-analysis was from about 4 to 40 times more precise than the individual study.  

The meta-analytic mean was about 17 times more precise than the average local study.   

Another way to consider the same issue is to examine the width of confidence 

intervals (the width is the difference between the maximum and minimum value of the 

confidence interval).  For the individual studies, the width of the confidence interval, 

which was computed by taking four times the standard error, ranged from .048 to .151; 

the mean width was .095.  The width of the confidence interval for the mean of the study 

reliabilities was .024, so the confidence intervals from the these studies tend to be on 



Estimating Reliability 9

average about four times wider than the confidence interval for the mean across studies.  

All of the confidence intervals tend to be rather small.  Compare them to the confidence 

interval width for a correlation of .30 with N = 100, which has a value of .367, which is 

nearly four times larger than the average confidence width for these studies.  The 

variance estimate for the correlation was computed by  

1
)1( 22

2

−
−

=
Nr
ρσ  , with ρ = .30 and N=100.                                                (5) 

There are two main points to this exercise.  First, it should be clear that the mean 

of the studies has less sampling error than do the individual studies.  Second, even 

moderate alpha estimates can be rather precise. 

Blending Local and Meta-Analytic Estimates 

 By allowing researchers to combine local and meta-analytic data, Bayesian 

estimates allow researchers with small samples to ‘borrow strength’ from the meta-

analytic estimates in a statistically optimal way.  The paper shows how to combine both 

overall or global estimates from a meta-analysis with a local estimate, and also to 

combine the output of a meta-analytic regression analysis with a local reliability estimate.   

For example, if size of company (or another continuous variable) has been shown to 

moderate the reliability of the measure, it is possible to calculate the estimated reliability 

for the current company from the meta-analytic regression and to combine that meta-

analytic estimate with the local study data to yield a local ‘best’ estimate.  Such a result is 

important in practical applications in which reliability influences the interpretation of the 

results.  The approach described in this paper is based on the work of Brannick (2001) 

and Brannick and Hall (2003).    
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 If we want to borrow strength from a meta-analysis to bolster our local study, we 

need estimates of the uncertainty of both the local estimate and for the meta-analytic 

estimate.  For the local study, we will consider only sampling error as a source of 

uncertainty.  The index we will use is the sampling variance estimate for alpha.    Two 

different sources of uncertainty may apply to the meta-analysis, however.  The first of 

these concerns the value of the mean of the meta-analysis.  Because the meta-analysis is 

based on a finite number of observations (and our universe of generalization is typically 

infinite), the actual population mean cannot be known; it can only be estimated.  The 

confidence interval for the meta-analytic mean quantifies the degree of uncertainty of  

this type.  The variance associated with sampling error can be calculated in several ways 

in a meta-analysis.  The simplest way is to calculate a sampling variance of the mean 

effect size is to do it just as you would for any raw data: 

k
k
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,                                                                (6) 

that is, the estimated population variance of the effect sizes divided by the number of 

studies.  Most meta-analysts would use a weighted formula, but regardless of the 

computation, we are estimating the sampling variance of the mean effect size. 

 The second kind of uncertainty has to do with the distribution of infinite-sample 

reliabilities in our population of interest.  If all of the studies of interest have the same 

underlying parameter, that is, all of the infinite-sample reliabilities are the same across 

studies, then there is no uncertainty about the value of the parameter from situation to 

situation (assuming, of course, that we could actually compute reliabilities without 

sampling error in them).  Such a scenario is known as fixed-effects in meta-analysis.  If 
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the infinite sample reliability varies from context to context or sample to sample, then the 

underlying population has a distribution of reliabilities.  Such a scenario is known as 

random-effects in meta-analysis.    In the fixed effects case, the variance of the 

distribution of infinite-sample effect sizes is zero.  In the random-effects case, the 

variance of the distribution of infinite-sample effect sizes is greater than zero.  Some texts 

refer to the variance of the distribution of infinite-sample effect sizes as the random-

effects variance component (REVC); others call it the variance of rho or tau-squared. 

22 τσ ρ ==REVC                                                                                        (7) 

There are also several ways to calculate such a value.  All of them depend upon knowing 

the sampling distribution of the effect size.  In this case, we need to know the sampling 

variance of coefficient alpha, which was expressed as Q/n (see Equations 1 and 2). 

 To blend the meta-analysis mean and the local study estimate, we simply take a 

weighted average.  The weights are the inverse of the respective uncertainties of the two 

quantities.  The uncertainty from the local study comes from the sampling variance.  The 

uncertainty from the meta-analysis comes from the REVC, that is, from Equation 7.  Note 

that if we were trying to update the meta-analytic mean, the uncertainty for the meta-

analysis would come from the sampling error of the mean, that is, from Equation 6.  The 

blending of interest in this paper results in a revised estimate of the local parameter, not 

the global mean.   

 It is often the case that the meta-analysis employs moderators to explain some of 

the variability in effect sizes.  In the case of reliability, moderators such as test length, 

delay between test and retest, and participant characteristics such as age can be used as 

moderators.  The effect of employing such moderators in meta-analysis is two-fold.  First, 
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it allows the more accurate prediction of population values through consideration of the 

characteristics of the context, such as the nature of the participants and protocol of data 

collection.  Second, it tends to reduce the size of the REVC, so that uncertainty about the 

values of infinite-sample effect sizes are reduced.  Models that employ moderators but 

also allow for a residual REVC are known as mixed-effects models in meta-analysis, 

because the moderator part is treated as a fixed effect, but the residual variance in 

infinite-sample effect sizes is treated as random. 

 Empirical Bayes estimates can be employed in both cases, that is, the estimates 

can be computed both when there are no moderators and when there are moderators.  

Next, I present an illustration of each.   

Random-Effects Model 

 Beretvas, Meyers, and Leite (2002) reported a meta-analysis of reliability 

estimates for the Marlowe-Crowne social desirability scale.  Their method of analysis 

differed in several respects from what I would recommend (they first took the square root 

of internal consistency estimates, transformed by Fisher’s r to z, and considered the 

sampling variance of internal consistency so transformed to be 1/(N-3)).  For purposes of 

this paper, please pretend that they had not taken any transformation and had instead used 

the sampling error estimates provided here.  Beretvas et al. (2002) found a mean internal 

consistency across studies of .726 (back-transformed to the original metric).  The 

estimated REVC was .02633.  Suppose that I collect data for my local study and find that 

my estimated alpha is .80 and my estimated sampling variance is .01.  Then, according to 

Bayesian principles, I can take a weighted average of the two estimates, where the 

weights are the inverse of the respective variances, thus: 
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The uncertainty of the result is the inverse of the sum of the weights in the previous step, 

that is, 
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In our example, 

78.
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=
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The standard error of the estimate would be sqrt(1/137.98)  = .085.  In this particular 

example, we would have an initial reliability estimate of .80 with a confidence interval 

ranging from .6 to 1.0 to a revised reliability estimate of .78 with a confidence interval 

from .61 to .95. 

Mixed Effects Model 

 In the same article, Beretvas et al. (2002) computed a regression equation linking 

study characteristics (moderators) to the obtained reliability estimates.  The intercept for 

the study was .93, and the statistically significant regression coefficients were .30, -.22, 

.01, and .01 for the moderators Age Range, Proportion of Men, Mean Number of Items, 

and Number of Items, respectively (number of items appears twice, but this is a 

peculiarity of their data collection and need not concern us for the present application).  



Estimating Reliability 14

Of further interest was the REVC between studies, which was .01987 (compare to our 

earlier value of .02633).  The weight associated with this value is 50.33 (up from 37.98).  

Assuming that we knew the Beretvas et al. (2002) coding system for the regression and 

that we had the required information on our local sample, we could plug the study 

characteristics into their regression equation to find a predicted value of reliability for our 

study.  Suppose that we have done so and found that value to be .85.  Again suppose that 

our local value is .80 and the estimated sampling variance is .01.  Then our revised value 

would be: 

82.
10033.50

)80(.100)85(.33.50
=

+
+

=PostES    

and  

006652.
10033.50

1
=

+
=PostV  

So we would start with an estimate of .8 with a confidence interval from .6 to 1, and end 

up with a revised estimate of .82 with a confidence interval from .66 to .98. 

Applications 

 I see three primary applications of the revised local estimates of reliability.  These 

are the same as the application of the original estimates, namely (a) communication of the 

magnitude of measurement error, (b) communication of the magnitude of error of 

individual scores (standard error of measurement), and (c) correction of effect size data 

for unreliability (i.e., the disattenuation for reliability formula).  In line with the purpose 

of this symposium, I suppose it could be argued that some sort of adjusted reliabilities 

might be preferable to unadjusted reliabilities for purposes the of meta-analysis of 
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validities.  The main purpose of the meta-analysis of reliabilities, however, is to 

understand the reasons for the variance in the observed reliabilities. 

Remarks on the Model 

 It may seem strange to average the result of the local study with the result of a 

meta-analysis.  Whether it is reasonable to take such an average depends primarily on the 

exchangeability or relevance of the meta-analysis to the local study.  If the studies 

contained within the meta-analysis appear similar to the local study in the essential 

elements, then taking the average appears reasonable.  On the other hand, if the studies in 

the meta-analysis do not appear relevant to the local study, then taking such an average is 

not reasonable.  However, similar constraints ought to apply to the meta-analysis.  In 

other words, if you believe it is reasonable to take the average of the studies in the meta-

analysis, and the local study could reasonably be drawn from the meta-analysis, then you 

should find it reasonable to take the average of the local and meta-analytic result.  

 I personally do not think that most meta-analyses in industrial and organizational 

psychology take a sensible approach to averaging effect sizes, that is, most meta-analyses 

average many different things rather than one independent variable and one dependent 

variable.  Consider the difference between a meta-analysis of the benefits of aspirin for 

preventing a second heart attack and a meta-analysis of all the effect sizes in the Journal 

of Applied Psychology.  One of the things I would hope to see as we move forward is 

online databases of study effect sizes and perhaps even raw data, so that practitioners 

could sample those studies that are most relevant to their situation, in effect completing a 

smaller meta-analysis that is most relevant to their situation.   
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 In my opinion, the REVC computed for most tests to date are large enough so that 

it is reasonable to expect that the test validity is not constant, but rather varies to some 

extent, although this could be due to mixing different tests and criteria into the same 

meta-analysis as much as to differences in context or other specific moderators.  Because 

we have only one or two random-effects (or mixed-effects) meta-analyses of reliability 

data so far, so we don’t really know how large the REVCs will tend to be for reliability 

data.  I hope to analyze some existing datasets soon to check on this. 

 The equations that I used for the empirical Bayes estimates are based on the 

assumption of the normal distribution for both the prior and the likelihood.  We know that 

alpha is not normally distributed, and that the sampling distribution of alpha only 

approaches the normal as the sample size increases.  My view on this is that all 

quantitative models in psychology can be shown to be wrong if only the proper data are 

gathered in sufficient number and detail.  However, the question should not be whether 

the models are absolutely correct (they are not), but rather whether they are sufficiently 

beneficial to justify their use.  Research is needed to determine whether the procedure I 

advocated is reasonable with sample sizes typically encountered in practice.  
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Table 1. 

Data for the LibQual+ Meta Analysis 

Alpha for Information 
Access 

Alpha for Total Score N 

.8038 .9567 232 

.7906 .9541 251 

.7377 .9554 760 

.6629 .9305 408 

.7778 .9473 266 

.7198 .9330 775 

.7323 .9501 265 

.7050 .9275  412 

.7023 .9361 224 

.7828 .9505 679 

.7493 .9483  412 

.7640 .9519 689 

.7645 .9413 219 

.7421 .9424 653 

.7774 .9561 303 

.7681 .9442 429 

.8069 .9517 275 

.7597 .9526 289 

.7151 .9435 184 

.7540 .9533 286 

.7619 .9477 588 

.7936 .9570 206 

.6483 .9275 572 

.7592 .9535 363 

.7945 .9548 274 

.7336 .9466 690 

.7575 .9573 441 

.7863 .9500 223 

.7114 .9430 379 

.7546 .9493 869 

.7544 .9435 274 

.7447 .9399 305 

.7177 .9256 954 

.8133 .9578 180 

.8136 .9543 807 

.7274 .9447 462 

.7746 .9487 395 

.7359 .9448 406 

.7433 .9283 210 

.7436 .9375 938 

.7230 .9575 174 

.7360 .9488 272 

.8395 .9710 168 
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